In 2011 this blog was listed as one of the top 10 blog in pharma technical information it is popular amongst the pharmacists and pharma industry professionals. We have published very important and very useful information for pharma industry professionals.

Friday, March 19, 2010

Aspects of sterility testing in sterile dosage form

"Sterility testing methods are required to be accurate and reproducible, in accordance with 211.194 and 211.165. USP <71> “Sterility Tests” is the principal source used for sterility testing methods, including information on test procedures and media fill "
Also see clean room classification
We will discuss following points in details
A. Microbiological Laboratory Controls
B. Sampling and Incubation
C. Investigation of Sterility Positives
1. Identification (speciation) of the organism in the sterility test
2. Record of laboratory tests and deviations
3. Monitoring of production area environment
4. Monitoring Personnel
5. Product Presterilization Bioburden
6. Production record review
7. Manufacturing history

Aspects of sterility testing are of particular importance, including control of the testing environment, understanding the test limitations, and investigating manufacturing systems following a positive test. The testing laboratory environment should employ facilities and controls comparable to those used for aseptic filling operations. Poor or deficient sterility test facilities or controls can result in test failure. If production facilities and controls are significantly better than those for sterility testing, the danger exists of mistakenly attributing a positive sterility test result to a faulty laboratory even when the product tested could have, in fact, been nonsterile. Therefore, a manufacturing deficiency may go undetected. The use of isolators for sterility testing minimizes the chance of a false positive test result.

A. Microbiological Laboratory Controls
Sterility testing methods are required to be accurate and reproducible, in accordance with 211.194 and 211.165. USP  “Sterility Tests” is the principal source used for sterility testing methods, including information on test procedures and media

B. Sampling and Incubation

Sterility tests are limited in their ability to detect contamination because of the small sample size typically used.For example, as described by USP, statistical evaluations indicate that the sterility test sampling plan "only enables the detection of contamination in a lot in which 10% of the units are contaminated about nine times out of ten in making the test" .To further illustrate, if a 10,000-unit lot with a 0.1 percent contamination level was sterility tested using 20 units, there is a 98 percent chance that the batch would pass the test.
It is important that the samples represent the entire batch and processing conditions. Samples should be taken:

1.at the beginning, middle, and end of the aseptic processing operation

2.in conjunction with processing interventions or excursions

Because of the limited sensitivity of the test, any positive result is considered a serious CGMP issue that should be thoroughly investigated.

C. Investigation of Sterility Positives

Care should be taken in the performance of the sterility test to preclude any activity that allows for possible sample contamination. When microbial growth is observed, the lot should be considered nonsterile and an
investigation conducted. An initial positive test would be invalid only in an instance in which microbial growth can be unequivocally ascribed to laboratory error.
Only if conclusive and documented evidence clearly shows that the contamination occurred as part of testing should a new test be performed. When available evidence is inconclusive, batches should be rejected as not conforming to sterility requirements.

After considering all relevant factors concerning the manufacture of the product and testing of the samples, the comprehensive written investigation should include specific conclusions and identify corrective actions. The investigation's persuasive evidence of the origin of the contamination should be based on at least the following:

1. Identification (speciation) of the organism in the sterility test

Sterility test isolates should be identified to the species level. Microbiological monitoring data should be reviewed to determine if the organism is also found in laboratory and production environments, personnel, or product bioburden. Advanced identification methods (e.g., nucleic-acid based) are valuable for investigational purposes. When comparing results from environmental monitoring and sterility positives, both identifications should be performed using the same methodology.

2. Record of laboratory tests and deviations

Review of laboratory deviation and investigation findings can help to eliminate or implicate the laboratory as the source of contamination. For example, if the organism is seldom found in the laboratory environment,
product contamination is more likely than laboratory error. If the organism is found in laboratory and production environments, it can still indicate product contamination.
The proper handling of deviations is an essential aspect of laboratory control. When a deviation occurs during sterility testing, it should be documented, investigated, and remedied. If any deviation is considered to have compromised the integrity of the sterility test, the test should be invalidated immediately without incubation.

A sterility positive result can be viewed as indicative of production or laboratory problems, and the entire manufacturing process should be comprehensively investigated since such problems often can extend beyond a single batch. To more accurately monitor potential contamination sources, it is recommend keeping separate trends by appropriate categories such as product, container type, filling line, sampling, and testing personnel.
Where the degree of sterility test sample manipulation is similar for a terminally sterilized product and an aseptically processed product, a higher rate of initial sterility failures for the latter should be taken as indicative of aseptic processing production problems.

Microbial monitoring of the aseptic area of the laboratory and personnel can also reveal trends that are informative. Upward trends in the microbial load in the aseptic area of the laboratory should be promptly
investigated as to cause, and corrected. In some instances, such trends can appear to be more indicative of laboratory error as a possible source of a sterility test failure.

Where a laboratory has a good track record with respect to errors, this history can lower suspicion of the lab as a source of contamination since chances are higher that the contamination arose from production. However, the converse is not true. Specifically, where a laboratory has a poor track record, firms should not assume that the contamination is automatically more attributable to the laboratory and consequently overlook a genuine production problem. Accordingly, it is essential that all sterility positives be thoroughly investigated.

3. Monitoring of production area environment

Trend analysis of microorganisms in the critical and immediately adjacent areas is especially helpful in determining the source of contamination in a sterility failure investigation. Consideration of environmental microbial data should not be limited to results of monitoring the production environment for the lot, day, or shift associated with the suspect lot. For example, results showing little or no recovery of microorganisms can be misleading, especially when preceded or followed by a finding of an adverse trend or atypically high microbial counts. It is therefore important to look at both short- and long-term environmental trend analyses.

4. Monitoring Personnel

The review of data and associated trends from daily monitoring of personnel can provide important information indicating a route of contamination. The adequacy of personnel practices and training also merit significant review and consideration.

5. Product Presterilization Bioburden

It is recommend review of trends in product bioburden and consideration of whether adverse bioburden trends have occurred.

6. Production record review
Complete batch and production control records should be reviewed to detect any signs of failures or anomalies that could have a bearing on product sterility. For example, the investigation should include elements such as:

A.Events that could have impacted on the critical zone

B.Batch and trending data that indicate whether utility and/or support systems are functioning properly.
For instance, records of air quality monitoring for filling lines ,could show a time at which there was improper air balance or an unusually high particle count.

7. Manufacturing history

The sterile pharmaceutical manufacturing history of a product or similar pharmaceutical products should be reviewed as part of the investigation. Past deviations, problems, or changes (e.g., process, components, equipment) are among the factors that can provide an indication of the origin of the problem.

Following are the regulations for Sterility testing in sterile pharmaceutical manufacturing

21 CFR 210.3(b)(21) states that “Representative sample means a sample that consists of a number of units that are drawn based on rational criteria such as random sampling and intended to assure that the sample accurately portrays the material being sampled.”

21 CFR 211.110(a) states, in part, that “To assure batch uniformity and integrity of drug products, written procedures shall be established and followed that describe the in-process controls, and tests, or examinations to be conducted on appropriate samples of in-process materials of each batch. Such control procedures shall be established to monitor the output and to validate the performance of those manufacturing processes that may be responsible for causing variability in the characteristics of in-process material and the drug product.”

21 CFR 211.110(a) states, in part, that “To assure batch uniformity and integrity of drug products, written procedures shall be established and followed that describe the in-process controls, and tests, or examinations to be conducted on appropriate samples of in-process materials of each batch. Such control procedures shall be established to monitor the output and to validate the performance of those manufacturing processes that may be responsible for causing variability in the characteristics of in-process material and the drug product.”

21 CFR 211.165(a) states, in part, that “For each batch of drug product, there shall be appropriate laboratory determination of satisfactory conformance to final specifications for the drug product, including the identity and strength of each active ingredient, prior to release

21 CFR 211.165(e) states that “The accuracy, sensitivity, specificity, and reproducibility of test methods employed by the firm shall be established and documented. Such validation and documentation may be accomplished in accordance with § 211.194(a)(2).”

21 CFR 211.167(a) states that “For each batch of drug product purporting to be sterile and/or pyrogen-free, there shall be appropriate laboratory testing to determine conformance to such requirements. The test procedures shall be in writing and shall be followed.”

21 CFR 211.180(e) states, in part, that “Written records required by this part shall be maintained so that data therein can be used for evaluating, at least annually, the quality standards of each drug product to determine the need for changes in drug product specifications or manufacturing or control procedures .”

21 CFR 211.192 states that “All drug product production and control records, including those for packaging and labeling, shall be reviewed and approved by the quality control unit to determine compliance with all established, approved written procedures before a batch is released or distributed. Any unexplained discrepancy (including a percentage of theoretical yield exceeding the maximum or minimum percentages established in master production and control records) or the failure of a batch or any of its components to meet any of its specifications shall be thoroughly investigated, whether or not the batch has already been distributed. The investigation shall extend to other batches of the same drug product and other drug products that may have been associated with the specific failure or discrepancy. A written record of the investigation shall be made and shall include the conclusions and follow-up.”


No comments:


What is 21 CFR Part 11, US FDA guidelines requirements of FDA compliance and CFR 21 Part 11.

What is a Site Master file of a pharmaceutical company

What is Generic Drug

What is Reference Listed Drug  ? ( RLD )

What is Pharmaceutical Equivalents

What is Pharmaceutical Alternatives

What is Therapeutic Equivalents

What are Post Market studies

Why a drug is bound to protein, What is protein binding?  What is drug absorption , distribution ?

Do Physical properties contribute to drug activity.

What is drug receptor , How a drug resistance occurs

Mechanism of drug resistance

What is drug interaction

Drug interaction, and its examples

What is first pass metabolism of a drug

What is What is 510(k) Clearances ?

What is 510(k) Clearances,

Premarket Notification for medical devices - PMN or 510(k)

What is a drug interaction

Examples of drug interactions


Antibiotic Definition and classification


Antibiotic Resistance and Antibiotic resistance mechanism

Antioxidants food supplements

Vitamin D Details on FDA cautions on accurate dosage of Vitamin D


What is an antibody? what is monoclonal and polyclonal antibodies?

Terminologies In vaccine Production

Multi stage testing of Virus vaccine production

Testing of vaccines at different stages of production

TESTING FOR ADVENTITIOUS AGENTS CELL PROPERTIES IN VIRAL VACCINE PRODUCTION

Enzyme linked immunosorbent assay ELISA

Raido Immuno assay

http://whoguideline.blogspot.com/2010/04/terminalogy-and-their-explanations.html

Pharmaceutical Aseptic Manufacturing Process Terms , Terminology and Definitions.

http://whoguideline.blogspot.com/2010/02/pharmaceutical-aseptic-manufacturing.html

Here are some articles which will be useful for you in further understanding of aspects of sterile dosage form manufacturing and regulatory affairs and good manufacturing practice in

pharmaceutical industry

Pharmaceutical Validation

Types of validations in pharmaceutical manufacturing


Requirements of documents for validation of sterilisation process

How to investigate OOS out of specification results

Determination of Phenol coefficient of a disinfectant

Sterility testing

Clean Room Classification

Time limitations in sterile pharmaceuticals processing

Aspects of validation of manufacturing process in sterile pharmaceuticals

Clinical Trials

Requirements of US FDA Inspections of Clinical Investigators of Clinical Trials

PROCEDURE OF AN INSPECTIONS OF CLINICAL TRIAL INVESTIGATOR BY US FDA HOW ARE CLINICAL INVESTIGATOR INSPECTIONS CONDUCTED?

US FDA INSPECTION OF CLINICAL INVESTIGATORS OUT OF UNITED STATES OF AMERICA

REPORTS AFTER AN INSPECTION OF A INVESTIGAOTR OF CLINICAL TRIALS

Controlling Pyrogens in injectable dosage forms

Media fill run process simulation aspects Validation of Aseptic Process and Sterilisation

New Drug Application (NDA) how to make a New Drug Application (NDA) to US FDA

Abbreviated New Drug Application (ANDA) What is ANDA , detailed information about ANDA preparation and submission to US FDA

How to make Investigational New Drug (IND) Application to US FDA

Drug applications submission to us fda Over the counter Drugs OTC drugs

BIOAVAILABILITY AND BIOEQUIVALENCE REQUIREMENTS

Electronic record in pharmaceutical manufacturing industry

Good manufacturing practice in pharmaceutical industry

Pharmaceutical industry pharmaceutical companies and FDA latest updates